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I. INTRODUCTION )

Various weys were trled recently to decrease the frictlon drag of
a body in a flow; they all employ influencing the boundary layer
(reference 1). One of them consists in keeping the boundary layer
laminer by suction) promising tests have been carried out by Holstein
(references 2 and 3) end Ackeret (reference 4). Since for large Reynolds
numbera the friction drag of the laminar boundary layer is much lower
than thet of the turbulent boundary layer, & consliderable saving in
drag results from keeping the boundery layer laminsr, even with the
blower power requlred for suction teken into account. The boundary layer
i kept laminar by suction in two ways: first, by reductlon of the
thickness of the boundery leyer and second, by the fact that the
suction changes the form of the veloclty distribution so that it becomes
more stable, in a manner similer to the change by a pressure drop
(reference T)}). Thereby the critical Reynolds number of the boundary
layer (US*/¥).nit becomes considerably higher then for the case without
suction. This latter circumstance tekes full effect only 1f continuous
suctlon is applied which one might visuallze realized through a porous
wall. Thus the suctlon quantlities required for keeping the boundary
layer laminar become so smell that the suction must be regarded as a
" very promising auxiliery means for drag reduction.

Various partial solutions exlist at present concerning the theoretical
investigation of this problem. Thus H. Schlichting (references 5 and 6)
investigated the plane plate in longitudinal flow with homogenecus
suctlon. At large dlstance from the leading edge of the plate a constant
boundary leyer thickness and an asymptotic suction profile result. Later
H. Schlichting and K. Bussmann (reference 9) investigated the two-
dimensional stagnation point flow with homogeneous suction and the plate

in longitudinal flow with vo~ 1//x (x = distance from the leading edge
of the plate). In all cases a strong dependence upon the mass coefficient
of the suction resulted for the veloclty distribution and the other
boundary layer quantities. K. Bussmann, H. Minz (reference 8), and

A Ulrich (reference 16) calculated the transition fram laminar to turbulent
(stability) of the boundary layer with suction for several cases; in all
of them the stability limit was found to have been raised considerably by
the suction. As 1s known from earlier investigations (reference T), the
same amount of Influence on the trensition from laminar to turbulent is
exerted by the pressure gradient along the contour in the flow for
impermeeble wall. Both influences (pressure gradient and suction) will

be present simultaneously for the intended maintenence of a laminar
boundary layer for & wing. Both influences have & stebilizing effect for
the suctlon In the region of pressure dropy; in the region of pressure rise,
however, pressure gradient and suction have opposite Influences. Whereas
wlthout suction, “or preszure rise, mostly transition in the boundary
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layer occurs; here the important problem arises whether this transition can
be suppressed by moderate suction.

The solutions for the laminar boundary layer with suctlion existing
go far are not sufficlent for answering these questions. An exact
calculation of the boundery leyer with suction encounters insuperable
numerical difficulties Just .as in the case of the impermeable wall. Thus
it is the more importent to have an approximation method at disposal
which permits one to check the calculation of the boundary layer with
suction for an arblitrary body. Such a method will be developed in the
Present treatlise. The method given here is an analogon to the well-known
Pohlhausen method for impermesble well. It permits the calculation of
the laminar boundary layer with suction for an arbitrarily prescribed
shepe of the body and an arbitrarily prescribed distribution of the
suctlion velocity along the contour in the flow.

II. SYTYMBOLS
(a) Lengths
X,y coordinates parallel and perpendicular, re._.cctively, to

the wall wetted by the flow (x =y = 0: stagnation
point and leading edge of the plate, respectively)

[--] ¢
o¥* displacement thickness of the boundary layer j] (r - u/u)é%)
y=0

9 momsntum thickness of the boundary layer

o

u/u(1l - uw/u)dy

=0
8y measure of the boundary layer thickness
1 plate length or wing chord, respectively
b "~ plate width )

{b) Velocities

u,v velocity components in the friction layer, parallel and
perpendicular to the wall

U(x) potential velocity outside of the friction layer

Uo free stream velocity

vo(x) given suction velocity at the wall vo< 0! suction
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(c) Other Quantities

To well shearing stress
To wall shearing stress for asymptotic solution of boundary
® layer on plate in longitudinal flow with homogeneous
suction
1
Q total suction quantity (E;L vo%;)
=0 -
cq dimensionless mess coefficient of suction; cy > 0: suction (%iﬁ;)
r_Jﬂ ()
U
c*Q reduced mass coefficient of suction (j ol
n . dimensionless distance from wall (y/51)

F1(n), Fp(n) basic functions for velocity distribution in boundery layer,
equations (8), (9)

K . form parameter of boundary layer profiles, equation (6)

el dimensionless boundery layer thickness, egquations (12), (13)
KoKy dimensionless momentum thickness, egquations (22), (23)

g dimensionless length of boundary lsyer (§§§€)2 g%%)

ITT. THE EQUATIONS OF THE BOUNDARY LAYER

WITH SUCTION
' Following we shall conslder the plane problem, thus the boundary
layer on a cylindrical body in a flow (fig. 1). x, y are assumed to be
the coordinates along the wall and perpendicular to the wall, respectively,
Uy, the free stream veloclty, U(x) the potentiel flow outside of the
friction layer, and u(x, y), v(x, y) the velocity distribution
in the friction layer. Suction and blowing is introduced intc the
celculation by having along the wall a normal velocity vo(x) prescribed
which is different from zero and generally wvariable with x:

vo(x) > 0: blowing; vo(x) < 0: suction

vo/Uo may be assumed to be very small (0.0l to 0.0001l). Only the case of
continuous suction will be considered, where, therefore, vo(x) is a
continuous function of x. One may visualize this case a&s reslized by a porous
wall. The tangential velocity at the wall should, for every case, egqual

zero. The boundary layer differential equations with boundary conditlons

are for the steady flow case

»
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du du .4u %
uss + VS; = Ua; +V 552 (1)

du oy
i + 5 = 0 (1a)

F=0 u=0; v =vg(x)
(2)
Yy =eo U.=U(x)

The system of equations (1), (2) differs from the ordinary boundary

leyer theory merely by the fact that one of the boundary conditions for

¥y =0 1s changed from v =0 to v = vo(x) # O. Thereby the cheracter

of the solutions changes decislvely: the solutions differ greatly

according to whether it is a case of vg> 0 (blowing) or vo< O (suction).

A special solution of the equations (1), (2) which forms the basis
for the theory of the boundary layer with suction and is used again
below 1s the solution for the plane plate 1n longltudinal flow with
homogeneous suction, thus vo{x) = vo = const< 0 and U(x) = Ug. TFor
this case the boundary layer thickness becames constant at some distance
from the leading edge of the plate; also, the velocity distribution

becomes independent of x (reference 5). From 5& = 0 follows because
of the continulty g! Z 0 and hence
v

v(x, y) = vo = Constant

Fram equation (1) then follows for the velocity distribution

IVo
- -y /8%« ,
u(x, ¥) = u(y) = Uo Q*e > =Uo€+e ) (3)

with

B¥e = — (1)
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slgnifying the displecement thickness of the asymptotic solution. The
wall shearing stress for this solution is:

Tog = u(ag;)o = ~pUgvo (ka)

It 1s independent of the viscosity. This asymptotic solution is one of
the very rare cases where the boundery lsyer differential equations can
be integrated in closed form.

For solution of the boundary layer differential equations (1), (2)
for the general case where the contour of the body and hence U(x) and
also vo(x) eare prescribed erbitrarily one could consider developing
the veloclity distribution from the stegnation polnt into a serles in
terms of x in the seme way as for impermeable wall (reference 11);
the coefficients of thie serles then are functions dependent on y for
which ordinary differential equations result. K. Bussmann (reference 17)
applied this method for the circular cylinder; with a very considerable
expenditure of time for calcwlations the eim was attained there. However,
for slenderer body shapes the difficulties of convergence increase so
much that this method which works directly with the differential equations
is useless for practicel purposes.

IV. THE GENERAL APPROXIMATION METHOD FOR
ARBITRARY PRESSURE DISTRIBUTION
AND ARBITRARY DISTRIBUTION OF
THE SUCTION VELOCITY
(a) The Expression for the Velocity Distribution

For that reason one applies an approximation method which uses
instead of the differential equations the momentum theorem which represents
an integral of these differential equations. By integration of the

equations (1), (2) over y Detween the limits y =0 and y = one
obtains in the known manner (reference 18):

s du _ _ T
U2dx + (29 + o¥%) UL T W, =g (»)
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9 signifies the momentum thickness, 8% the displacement thickness,and
To = p(§£)° the wall shearing stress. Thne approximetion method or

calculation of the boundery lsyer to be chosen here proceeds in such a
rienner that a plausible expresslion is glven for the velocity 4distribution
in the boundary layer u(x, y) which is contained in equation (5)

in 9, 8 @and Tg. Thus an ordinary differential equation for 9(x)
results from equation (5); after this differential equation has been
solved one cbtains the remaining characteristics of the boundery layer
8*%(x), To(x), and the velocity distribution u(x, y} in the boundary
layer. The usefulness of this aprroximation method depends to a gresat
extent on whether one succeeds in finding for u(x, y) an expression

by appropriate functions.

Pohlhausen (reference 15) first carried out this method for the
boundary layer with impermeeble wall. The velocity profiles in the
boundary layer were approximated by a one-parametric family and the approxi-
mation function for the velocity distribution expressed as & polynome of
the fourth degree. The coefficients of this polynome are determined by
-fulfilling for the veloclty profiles a few boundary conditions which
result from the differential equations of the boundary leyer. This
method proved to be satisfactory for the boundary lasyer without suction.

Thus one proceeds in the same wsy for the boundery layer with

suctlon. For the velocity distribution in the boundary layer one chooses
the che-perametric expression

(6)

£=7i(n) +KP2(n); 0= o2 (x)

Fl(q) and Fp(n) are fixed prescribed functions which are immediately

expressed explicitly; K = K(x) is a form parameter of the boundary
layer profiles,the distribution of which along the length ls dependent on
the body shape and the suction law; B81(x) 1is a measure for the local
boundary layer thickness. The connection between 83 and &% and 9 1is
given later. It proved useful to choose other expressions for the
functions Fy(n) and Fo(n) then Pohlhausen for the impermeeble wall.
Tor the velocity profile according to equeticn (6) the following five
b-undary condltions are prescribed; they all follow from the differential
equations of the boundary layer with suction, equation (1), (2):

A A du oy 2y
y=0 u=0; vg v = Ugi +\’ay2 (7a,b)
ou Pu v
y=ow u=Us — =0 —x =20 (7c,d.,e,
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The selection of Fj1(n) end Fao(q) 1s to be mede from the view point

that a few typical special cases of velocity profiles of the boundary
layer with suction are represented by equation (6) as satisfactorily as
possible. In particular we shall require the asymptotic suction rrofile
according to equation (3) to be contained in the expression (€). This
condition is satisfied if one puts

Fo(n) =1 - e (8)

and correlates the values K = 0 and 8) = 3% to the asymptotic suction

profile. Furthermore, the expression (6) naturally should yleld useble
results also for the limiting case of disappearing suction. To this
purpose a good presentation of a typical boundery layer profile without
suction is required. One chooses as this profile the plate flow for
impermesble wall according to Blasius (reference 11). Since no convenient
enalytical formula exists for the exact solution of this case, a gocd
approximetion formula for Blasius' plate profile is needed. It is found

that the function ﬁ% = sin(an) gives a very good approximetion to the
Blasius profile (a = Constant)!l Thus one puts

0<n< 3 Folyg) =Fp - sin(’-th _
(9)

n>3 F2(q) =F; - 1=~

and then obtains with K = -1 a good epproximetion for the plate flow
without suction. The corresponding value of ®; 1is given later. The

functions Fi(n) and Fo(n) are given in figure 2 and table 1. Thus
one has for the velocity distribution in the boundery layer the expression:

1Thet the sine function is a good approximation for the velocity
distribution at the plane plate without suction, resulted from an
investigation of Mr. Iglisch about the asymptotic behavior of the plene
stegnation point flow for large blowing quantity (reference 20).
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0<n<=3: %=l-e'ﬂ+KEL-e'n-sin@TD]

(10)
>3 $=1-(K+1e™

By selection of the functions F1 and F2 the boundary conditions (7a,c,d,e)
sre per se satisfied. The last boundary condition,equation (7b), results,

because of
Do @E) ) - g)
5 =V ¥/ 51 1+ KCL (11)

in the following quelifying equation for K:

VAU
o 1+K1-’-‘6]=UU‘ - vA5(1 + K)
51 81

end from it with

81_2'0'
A = y (12)
“V B
A = VOl (12)
for K the equation
A+ A -1
K = (1k)

JERRCCARE Y

» and Ay are two dimensionless boundary leyer parameters. A quantity
analogous to * was already used by Pohlhausen for the boundary layer
without suction; A1 1s newly added by the suctlion. For the asymptotic
suction profile with ©) = 8, A3 =1 according to equation (4). The

form parameter K as a function of A and A} 1is represented In
figure 3.
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(b) The Differential Equation for the Momentum Thickness

In order to obtain by means of the expressions (6), (8; and (9)
from equation (5) the differential equation for the mcmentum thickness
one must first set up the relations between 9,5% and 8,. For the
displacement thickness there results:

o0

g—* = J' (1 - F)ay - K f Fodn (15)
1 1]=O 4] :

The calculation of the integrals gives:

%=1-K2--g)=g*(l() (16)

For the momentum thickness one obtains:

[+ ]
5-% = f (F1 + XF2)(1 - F1 - KFo)dn
)

3
5 = Co + CiK + Cok2 = g(K) (17)

The calculation of the integrals gives:

Co = J‘ Fi(1 - F1)an = £ (18a)
0

2
1+663

e

(o)

Cl = JI (FE - -'Fng)dﬁ = -] + " = 0.06656 (18b)
0

wiA
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1+ A
3

©
Cp = _f Faedn = -3 + 1—2- -z ___6_6__ = -0.02358 (18¢c)
0

1 +(3)

L

Hence

Cl-02=2-.7§t=0'0901}+
Thus there is

3
5 - -32= + 0.06656C - 0.0235&2 = g(K) (172)

For the form peramster of the boundery layer profiles ©%/3 used later
one obtains therefore

_ 1- K@ j ;6) _ 1 - 0.09014K (19)

%+ C;K + CoK? 12. + 0.06656K - 0.02358

dﬂ$

Furthermore there results according to equations (11) and (17):

;9% [1 +xQ - 2)] = £(K) (20)

The functions g(K), %A and Tod /U according to equation (11) are
represented in figure L and teble 2.

In order to derive fram equation (5) a differential equation
for #(x) one writes equation (5) in the form

Ud ad U8e Ty 9
FEC-DE -2 (21)

Furthermore one introduces according to Holsteln and Bohlen (reference 12)
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I_L'_gf =K = \g® (22)
and
:Zgg =k = Mg (23)
With
2= & (24)
then -
k=2U'; Ky = -vo/;z‘ (25)

is valid. With equations (22) to (25) as well as equation (20) the
differential equation (21) is transformed into

6
1l ~-Kl2 -=
+ |2 + ————-—-——-g(g{) :t) K+ oK = £(X) (26)

5 U

S

If one finelly puts for abbreviation:

1 -xG - 9)

g(x)

Gk, k1) =2f - 2x|2 + - 20y (27)

the differential equation for Z(x) becomes:

§=M- k = ZU'; Z (28)

T k1= Voly
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If the function G(x, k1) is known, the integral curve Z(x)
can be calculeated from thie equation by means of the isocline method.

For carrying out the calculation in practice it is useful to
introduce dimensionless quentities. One forms them with the aid of
the free stream velocity Uy and a length of reference 1 (for instance,
chord of the wing). Thus one puts

VAl volx*) g1
7% = —i(—); x¥* = %; T -\—?— = fl(x*) (29)
Then equation (28) becomes:
az* _ G___._(K’ k1), R = 7% 1 4 Ky = fq(x*) /E; (30)
o o, Rt & s aly/

The function G(k, k1) 1is calculated as follows: First, one obtains «
and ky as functions of A and A; from equations (22) and (23), if

one takes the connection between K and A, A} according to equatlon (1k)
into conslderation:

k= @&(K)h = g2(h, M)A

From equations (27) and (31) follows:

gE.-!—K@. -,%)]-A.522+
: gl+KC1-%>-2xg-xE.-K€--g)] -

egF()\-) Xl) (32)

16D

35

- \18

%
I

[»]
it
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wlth

F(x,xl)=1+KC--’é>-2xg—x[1-K2--,?)]-xl (33)

Hence G can be calculated first as function of A, A and then,
because of equetion (31), elso as function of k, Ky.

The functions k(A, A3) and ky(A, Aq) are represented in figure 5
and teble 3. The function thus determined G(k, k) 1is given in
figure 6 and table 3.

(c) Stagnation Point end Separation Point

The behavior of the differential eguation (28) at the stagnation
point where U = 0 requlres specisl considerations. In order that the
initial inclination of the integral curve (dZ/dx)o_ at this point be
of finite value, G{k, ql) must equel zero. This gives the corresponding
initial velues Ky, K;,. Since the function g(K) does not have a zero
for the values of K considered (compare fig. %) the determination
of the initlel velues kg, K10 amounts to the zeros of

F(ho) Mg) =0 (34)

The resulting initial values at the stegnation point Ao, A}, &are given
in table 4, together with the initial velues K, Ky, calculated
additionally according to equation (31). To each pair of values Kos B30
corresponds a mags coefficlent of suction which resulis from

v Jo = Kob v = Fflo
as
-volo) k1o

—_ = —= = C,
er-'Ov VRO

In figure 7 the initial values Kk, and K3, are plotted against the
local maess coefficient at the stagnation point. The lnitial value Zg
corresponding to kg 18 cobtalned by '
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Zg = (35)

The following connection exists between the distribution function of

“TolX Upl

the suction fi(x) = —# -~
o

a profile constamt. Thus there is

v
{To'v = Ugfa I/ﬁ;‘i

o -vo( o) -vo(O) /—-
° Uo'V /EI

fl(o)

Co /’5 (36)

The determination of the initial values of the integral curve proceeds,
therefore, as follows: With the given initial value of the suction
velocity at the stagnatlion point £ (o) one first determines Cqo
according to equation (36). One obtains the corresponding initial
velues K, and K5, from figure 7, and according to equation (35) the
initial value Zp of the integrel curve. If the suction does not
begin at the stegnation point but further downstreem, Cg = 0;

kio = 0 and according to figure 7

and Co! Up' = K1Uo/l, Ky being

and

0.0709

Ko = 0.0709; Zg = 5
o

Separatlion point.- The separation point is defined by the fact that
the wall shearing stress there equals zero. This gives for K, according
to equation (1l1), the value X = g -én = -2.099. For the asymptotic suction
profile K = 0; +this is simultaneously the greatest possible value of K.

To K = -2.099 corresponds the value X\ = = -1.099 for all Ay, end

-
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K = -0,0721 for all k3. However, if one would want to carry the
boundary layer calculation up to this point, certaln difficulties result
in the last part shortly shead of this point, since the correlation
between x and ) 1s not unequivocal there (compare fig. 4). The
function G(k, k1) against & also is not unequivocal shortly shead

of this point. Thus it is useful to select a point situated somewhat
further upstream as separation point where the boundery layer calculation
has to stop. Such a point results if one chooses the K - value of an
exact separation profile according to Hartree (reference 13). For this
latter there is:

2
separation: K = <§7 gg ), = -0.0682 (37)

One .defines this polnt as separation point of the present dboundary
layer calculstion for all mass coefficients of suction. The following
table gives a survey of the values of ¥ end &% at the separation
point for four different calculation methods:

2 2 *
Case Turany [Tu=n | &
New method: (sineg ,_ i
approximation) (-0.0721) (-1.55) (4. 64)
Pohlhausen Pk )
(reference 15) -0.1567 1.92 3.50
Exact Hartree
(reference 13) 0.0682 1.22 4.03
Exact Howarth _ )
(reference 1k) _0'0841 1.25 3.84

The selection of the separation point thus made is scmewhat arbitrary,;
however, 1t may be accepted unhesitatingly since, as is well known, the
approximation methods for the boundary layer calculation in the region
of the pressure rise are always somewhat uncertain and only a rough
estimate but no exact calculation of the boundery layer parameters is
possible here. For the same reason one may also accept the fact that
for the present case the veloclty distribution u/’UO partly assumes,
shortly ehead of the separation polnt, values which are. slightly

larger then 1.

v
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(d) Performance of the Calculation for the Genersl Case
By means of the system of formules given above one may perform the
calculation of the boundery layer for an arbitrarily prescribed body
shepe and an arbitrary distribution of the suction velocity elong the
wall in the flow. It tekes the following course:

To the distribution of the suction velocity -vo{x) corresponds
the totel suction gquantity

1
Q =J7 volx) dx = -cqUobl

x=0

and the reduced mass coefficient

CQ* = CQ l/%z (38)

and the reduced suction distribution function according to eguation (29):

-v (x*) /U,
£1(x*) = JURL =AY >
1( T, v
Thus there is
1
cQ* =‘£ £1(x¥) ax* (39)
*=0

If the suction begins at the stagnation point, one determines
l - -
with K3 = i (d?cm )o the mess coefficient C, at the stagration poin:

according to equation (36). Then one obtains K, and K15 from

figure T and Z, accordi to equation (35). With these initiel values
the differential equation (30) can now be graphically integrated by mesns
of the diegrem in filgure 6. The celculation is carried out up to the
point where &k reaches the value K, = -0.0682. This in%egration

immediately yields Z%,. K, &7 as function of x¥, with
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/7% = ‘% ‘/1-133 (L0)

The remaining boundary layer peremeters then result as follows:
By means of figure 5 one obtains after Kk and Ky the parameters A
and A7 and additlonally from figure 3 the form parameter K. After K
one obtaing from figure 4 the form parameter d%/9 eand thus

g* [Ugl _ 8%
Vv =5V

From equation (20) one then also obtains the wall sheering stiress T,

TO vl f(K) ( 408.)

G

Finelly, the perameter 8; is required for the velocity distribution in
the boundary layer. According to equations (6), (7), and (40):

- & < F et - I/__ sl (12)

Examples of such boundary layer calculations are given in chapter VI.
V. SPECIAL CASES
A. WITHOUT SUCTION

Our general system of formulas 1is to be speclalized in this section
for & few typicel speciel ceses for which one can partly give solutions
in closed form. First, the case without suction 1n particular shall be
treated for which, naturally, our squations also must give satisfactory
results. This cese one obtains for vg(x) = 0; then
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A3 503 K =0 (without suction)
and equation (14) is trensformed into
K=x-1
Therewith, according to equation (17):

& = &) =3+ 0100 - 1) + Ca(r - 12

1l

=34 4 0.06656 (A - 1) - 0.02358 (» - 1)°

2

The differentisl equation (28) for the momentum thickness becomes
az _a(®). L _ o
B k=W

g(k) 1is, according to equation (32) and (33):

G = 2gF(\)

F()) =1+(x-1)(1-§)-2x l:%+cl(x-1) +c2(x-1)2]
—x[1+(1-x)<2--§)]

RN I

Furthermore, according to eguation (31):

82 1 22
k=g =25+ C(x-1)+0C(x-1)

19

(¥2)

(43)

(44)

(46)

(47)
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The values of G and k calculated according to equations (43}, (45),
(46), (47) are given in table 3.

(a) The Plane Plate in Longitudinel Flow
The boundary layer at the plate in longitudinal fiow without suction

(Blasiue) wich U = Uy 1is obtained for A = K = 0. Then, according
to equations (42) to (46):

\
K= -1
g(os 0)=%'Cl+02=-§—21
> L8
(o, 0) = 2 (48)
G(010)=2%($‘§=2'g=0-h29)

With the initial value Z, = O the integration of equation (44) then

o\ X
ives: Z = @ - —) - or
g ) U,

/LL - K (VY vx

For the form paremeter &%/9 follows fram equation (19):

P Sl (30)

L - n
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and thus for the displacement thickness

[_2_ [vx ’v_:_c <
3% = (n - 2) i ﬂ/_U: = 1.T4O T, (31)

W

For the coefficlient of the total friction drag cy = g-§;€ of the
Uo
plate of the width b and the length 1, wetted on one side, one

25,
v

v ’V
cp = V8 - aﬂllﬁ = 1.308VT?:L {(52)

Finally, the velocity distribution is, according to equation (10),

0<£1<3 u="U, sin(%b

obtains because of Cp =

Thereln is n = ail and

x [ 2 {Vx vx -
51=3):—_-;ﬁ’;=l'60U—° (7)4')

In figure 8 the velocity distribution according to equations (53)

and (54) is compared with the exact solution of Blasiusj the agreement is
very good. TFurthermore the characteristics of the boundary layer according
to the present approximetion celculatlion are compared with the values

of the exact solution of Blasius 1n the followlng teble. For further
comparison the values according to the approximetion method of Pohlhausen
(reference 15) also have been given. The agreement of our new approxi-
mation method with the exect solution is excellent for all boundery leyer
paramreters; the drag coefficlent, in particuler, shows an error of

only 2 percent.
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Coefficients of the Boundeary Leyer at the Flat Plate

in Longitudinal Flow Without Suction

M
-

/Uo Us | &* Uol\2 o 3
I ] —— - —— - —
Calculetion method 5 ¥z 3 3 CA Y TR

New method (sine
approximetion) 1.740 0.655 | 2.66 1.310 0.215

Pohlhausen P

(reference 15) 1.750 | 0.685 [ 2.55 | 1.370 0.23%4

Exact (Blasius) 1.721 0.664 | 2.59 1.328 0.220

The deviations of cur sine approximation from the exact solutlion are,
for most charsacteristics, even somewhat smaeller than in the Pohlhausen
method. '

(b) The Plane Stagnation Point Flow

For the plane stagnation point flow the velocity of the potential
flow U(x) = uyx. All boundery leyer characteristics eare in this case

Independent of the length x. The initial value of the mcmentum
thickness Z, 1s obtained from equation (Lk) for G(k,) = 0. Since g(X)
doee not venish in the range of the velues of K considered, there

must be F(hg) = O. From equation (46) one finds as zero of F(\) the
value

Mo = 0.3547 (stagnation point without suction) (54)

‘The corresponding values of K and k according to equations (42)
end (L47) are K, = ~0.6453 end K, = 0.0709; furthermore there is,
according to equetion (43): g(Ao) = O.LLT. Therewith the momentum
thickness for the plane stegnation point flow becomes:

v v
o e T - o o

The form paremeter &%*/9 results from equation (19) as 5%/9 = 2.37;
therewith one has .
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&% = 2.37 [k, I/&’i = 0.630/% (56)

Furthermore, according to equation (43): 8, = 0-595y 1%_ Thus there
results from equation (11) for the wall shearing stress:

.
= ;’—l = 1.163 (=7

The velocity distribution results from equation (10) as:

B )
0L < 3 ét = 0.35T(1 - ™M) + 0.6453 sin(-én)

’ (58)

n=3: 335 =1 - 0.35The™n

with
=L =1 68”/“-1 (58a)
=8 . v

Figure 8 gives a comparison between veloclty distribution according to
equation %58) and the exact solution by Hiemenz (reference 12); here also
the agreement is satisfactory. Furthermore the characterlstics of the
boundary leyer according to the present calculation are sgain compered
wlth the exact solution by Hiemenz and with the approximate calculation
by Pohlhasusen in the following table.
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Coefficients of the Boundary Layer of the Pleane
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Stegnation Point Flow without Suction

ul oy o oV To?d
Celculation method 3 by 5 /EF 3 il Al Wi
New method (sine

approximation) 0.266 | 0.630 | 2.37 | 1.163 0.310
Pohlhausen Pl

(reference 15) | 0.278 | 0.641 | 2.31 | 1.19 0.331
Exact (Hiemenz) 0.292 | 0.648 | 2.21 | 1.23% | 0.360

The agreement of the new method wilth the exact solution is for this
case somewhet less satisfactory than for the plane plate; neither is 1t
quite as good as the approximation of Pohlhausen. But even here the new
method yields still very useful values.

B. WITH SUCTION

In this sectlon & few cases with suction will be treated for which
the solutions can be given in closed form. First we shall treat the
boundary layer at the plate in longltudinal flow with homogeneous suctilon,
already investigeted formerly (reference 6). The following results are
conslderably more accurate than those former ones.

(a) Growth of the Boundary Layer for the Plate
in Longltudinal Flow with Homogeneous Suction
For this case the boundery layer 1s at large distance from the
leaeding edge of the plate independent of x; hence all boundary layer
parameters are constant. The corresponding asymptotic soclution has

been glven elready in eguetions (3), (4), (4a). The applying velues
are:

v 5%

6*00 = :V—O; T = 2; TON = -pUOVO; K=20
1 (59)
5l=5"&,; A o= 15 nl=‘§
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One now calculates the growth of the boundary layer from the value
zero at the leading edge of the plate to the given asymptotic value.
In our system of formulas one has to put for it:

A= 0y k=0

Therewith becomes according to equation (1) with the abbreviation

1-56.—.c=o.u75u (60)
- (61)
l-ckl

and according to equation (17)

%—_ = &(0, 2y) = 2 +(il7:lc:lf§"12 (62)
with
Po = -3 + 2= 0.40986
p =3+ %2 - %0 = 0.06656 (62e)
Furthermore there is according to equation (16)
%=3-§+x1€3+,§+§) (63)



26 NACA T No. 1216

The well shearing stress becomes according to equations (11) and (13):

X z
U 6 6
T0 = ua—g — "pV'oUo —T (6)"')
11 -crg A (1 - ery)

The differential eguation (28) assumes for the present case the form:

= G(01 nl).

az zZ.
= TR K1 = Vo /-;, v, = Constant < 0 (65)

The integration of this differential equation requires the explicit
expression for G(o, ky). According to (32) end (33):

z . cA
G(o, k1) = 2¢g L. M) = 2g(l - 1) 6 "1 (66)
1 - chy 1-ocn

Thus G(o, k3) = 0 for Ay = 1. Therefore A3 =1 1s a solution of

the momentum equation; it corresponds to the asymptotic solution. The
initiel value at the leading edge of the plate 1ls A] = 0. For the
length of growing boundary layer A3 varles from O to 1.

If one introduces as dimensionless distance along the plate

P = L ({,—g)e (67)

the differentisl equation (€5) cen be written in the form:

a(x12)
d; = 6(xy) (68)

Initial value: & =0 gy =0 (68e)
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The connection between kK3 and X3 is given by

with g(A1) according to equation (&2).

The differential eguation (68) cen be solved according to the
isocline method. For the present case, however, en snalytical solution,
too, is possible which 1s preferable. From equation (69) first follows:

d.K.l d.)\.l
D at = G(x;) (70)

Here &11 q_uantities-can be best expressed by XA, 8o that a differential
equation for Aq(f) results. With dry /d\y according to equation (69)

one obtains from equation (70) after division by 2g since the latter
does not disappear in the range 0 <A S 1t

n

- cA ’
M G + M\ g-;’)g-’él = (1 - \g) f - cki (7{)

Initiel value: & =0: Ay =0 (71a)

Because of g(o, o) = po = ;6{ -% one obtains from it in the neighbourhood
of £=0, X =0 '

DM = g g - ,;-'é) vy (72)

t =3 (,é - g)xlz = 0.3911;% (73)
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Hence follows for the neighborhood of the leading edge of the plate
(¢ =0

~vs0
Klr:l.GOI/E' or v:l=l-60f§-

:\‘0\

follows hence:

-VOE* )
v = (- 2)l/£f:~;\ﬁ;
2
= - e — —x
&% = (=n 2)|/h - l/;o

As the camparison with equation (51) shows, the boundary layer thickness
starts, therefore, at the leading edge of the plate with the value for
the plate without suctlon.

B%*
Because of — = 3 -
51

or

In order to integrate the equation (71), one has to insert the
explicit values of g(\1) and dg/dr1 according to equation (&2).
After some intermediate celculating (compare appendix I) one obtains

a2 N
DL (1 - B - A1) (’é— - ch

with
™

Po = O.’-l-0986

H
[o]
1}

= 2p; + poc = -0.L66T

9
1

(75)
Po = 3po = 0.1T457

d
w
0

-cpp = -0.02772 _J
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The breegking up into partiel fractions ylelds:

P K K
at - s + L. Ka-—ﬂ + 3 5 + K = £'();) (76)
d)v.l c3 7‘.1 -1 c}_l - 3 (c),l - l) : c).l -1

The integration with the initial velue Xy =0 for § =0 yields
P K2 &
§=£xl+KlZn(l-xl) + = Zn@.- ?LD

A Ky 2
Kg Sm -1 + < (1 - ca1) = £2(0) (77

The X3, ..., K), result from the bresking up into partial fractions as

Kl = -6.9560; K2 = 3.4704; K, = =-0.228Y4 K’-I- = -0.1569 (78)

3

Thus the solution finelly reads

£ = -0.256k\y - 6.956 In (L - ;) + 7.2846 In (1 - 0.90991)

A
—_— 0. - 0.
+ 0.2284 STe I 0.3293 In (1 ~ 0.476ln;) (79)

®For develomment of this solution in the neighborhood of & = 0,
Ay = 0, the coefficient of Ay must, because of equation (73), equal zero;

the coefficient of Xla mst equal %— g— %) = 0.391. The resu.'l.% is:
P—;-Kl-%(e+x3-xh=o (772)
c
K1 _ 18 c 6
-2 -%rra-2n-1G-D (T7)

With the numerical values of equation (78) one may verify that these
equations are satisfied.
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The solution A;(8) celculated accordingly is given in table 5.

From ll(ﬁ) all remaining boundery lsyer peremeters can then be calculated
immediately according to equations (6l), (62), (63), and (64). They also are

'VOB* 5% 705"*
given in teble 5. In figwe 3 —35—, F and N are plotted egainst /E .
Ko

The displacement thickness of the boundery layer reaches 0.95 of
its asymptotic velue after em extent of the growing boundeary layer of

2
U

€y =Cé§> —%x—Az L.5. The velocity profiles in the growing boundary
-v

layer in the plotting u/Uo against -‘-’-0—3: = NAy are rerresented in

figure 10. For the well shearing stress one obtains from equations (64)

and (ha):
%

&

T =
O A(1 = cr7)

Io-l

(80)

‘/_The wall sheearing stress is plotted in figure 11 as a function
of E .

Drag.=- In view of the reduction of the dreg by maintenance of a

laminar boundary layer the frictlon drag in the extent of growing
boundary leyer is of particuler interest for thils solution. For the
asymptotic solution the locel friction drag along the wall 1s constent
with 714, = =PV Ups thus the coefficient of the total friction drag
alsgo equals this value

.
op = 2 =p°°° =._2;_Q (81)
2

For smell suction quentities -v,/U, the extent of growing boundery

layer 1s sometimes so large that the growth is not finished by far at the
end of the plate. According to former investigetions (references 8 and 10)
it is to be expected that for homogeneous suction at the plate the
maeintenance of a laminsr boundery layer i&s possible even for Reynolds

U
mmbersof the order of magnitude -%- = 107 to 10° with a very small
suction quantity of the order of magnitude cq = ﬁxg = lo'l‘. For .619 = 10'1‘
Ugl o (o]
end % =107 or 108 one has at the end of the plate
TNE Ugl
g, =<ﬁg) -3— = 0.1 or 1, that is, the growth of the boundary layer

is not finished by far.
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Since the friction layer over the extent of growing boundary layer
is thinner, the friction drag there 1is considerably larger than for the
agymptotic solution. For this reason the calculatlon of the drag over
the extent of growlng boundary layer will be glven completely.

The total friction dreg for the plate wetted on one side is:
[
W=b T, dx (82)
0

and with the velue of To according to equation (80) and with T,
according to equation (La):

1
dax

b
p°°6f A (1 = ery)

¢]

2
With dx = @ g; d% according to equation (67) this equation becomes:

2

2y =« at
W= eblo o 6 £=0 a(l - ory) ' (%)

with &, signifying the value of § at the end of the plate, thus:

2
§z =(%~:> I‘{,Lz = f()"lo) (84)

Therein A}, signifies the value of A3 at the end of the plate which
is obtalned from equation (77) for & = €15 therefore

P K.
200 = B Ao + Ky T (1 - 210) + = 1 (1 - Ry
[+

lo K_b,
- K3 + T

n (1 - erio) (85)
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d
Introducing in equation (83) for 5%; = £'(Ay) the expression according

to equation (76) one obtains:

v
W = pbU,2 SF (o)

and ,
W v
Cf = =2 F(Xlo) (86)
Sulpt Vol
with F(M1o) signifying
Mo ‘(1)
T £ (A1) &
F(Mo) =7 x—-—'——l'l(l o) (87)
)\.l=0

v -y
Fin introduci = 8 £(n accor to equation (84%) into
ally ng o1 =g £010) ding to eg (
equation (86) one obtains
~vo F(A10) v

—_ 0.0 (
Cp = = a¢(\1o)
£ 2Uo F( o) U °

or

Cf = Ofw G(?\.lo) (88)

Because of the connection between A1, and §&; according to
equation (84), the total drag coefficient for the extent of growing
boundary leyer is thereby given as a function of the dimensionless

Vo 2 Uyx
distence along the plate &y =(15; ~5~+ On the other hand, equations (8%)



NACA T No. 1216 33

and (88) give for prescribed mass coefficient of the suctlion -vo/Uo

the drag law cgy &lso against Uol/v in the form of a paremeter
representation. The perameter Alo 1s the dimensionless boundary

"Vos
layer thickness at the end of the plate: \yo = < V9 . The vealues
x=1
of Ao 1lie between O and 1, the first value being valid at the
leading edge of the plate, the latter for the asymptotic solution, after
the growth of the boundary layer has ended.

The calculation of the integral F(\jo) &according to equation (87)
gives (appendix IT)

%‘(Xlo) = 33 - — - ;2- - K3 +KD in(1l - chio)

+ -fstl In(l - M) + &%KQ in GL - %Xla

eMlo K3 chiof2 =~ crqg)
R ———— + — Statins
1l - chio 2 (x - C)\-lo)z

- (ks + ) (89)

¢ is, accc;rding to equation (60), ¢ =1 -g, end X3, ..., Kj are

given by equations (75) and (78). After insertion of the mumerical values
according to equations (60) and (78) follows:

F(A1o) = =0.3288 in (1 - 0.47610) - 6,956 in (1 - \yo)

+ 7,2846 in (1 - 0-9099\10)

0. LT76MN 0.476A1, (2 - 0.4T64N1,4)
10 - 0.05980 1o - 1o
- 0.47610 (1 - 0.476410)

- 0.037h T

The values of F(Aio) and G{\A1o) &are given in table 6. For Ajo —>1
that is E"L —>» (growth of boundary layer ended) one has, as can

immediately be seen from equations (89) and (77):
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F(h1o)

o) " G(r1o) = 1 (892)

Ao

and thus cpr—ycp for £7—2%. On the other hand one has in the

neighborhood of the leading edge of the plate, that is, for Ajo—> O
according to equation (73)

Ao—>0: (o) = % Cg - g—) 7\.102
and thus according to equation (87)

Mo—30t Flro) = Gf— - %) Mo

and therefore

1
Me—>0: GAg) = 5 = (89p)
lo lo 3 Xlo

If one substitutes this value into equation (88) end takes into consideration
that

_ 1
a0 =l TS

is valid for small A}, according to equation (73), one obtains

Vo [4 - x
or =225

v
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or

-1/2

cp = MS - 2% (?%%)

thus the drag law of the plate without suction according to equation (52).
The drag law of the length of growing boundary layer is therefore for
very smell lengths of growing boundary §&; asymptotically transformed
into the drag law of the plate without suction.

The drag law according to equation (88) is represented in figure 12,
where Cf/Cfm is plotted egainst §&3. Furthermore figure 13 gives the

drag law in the form cy against Ugl/V for various values of the
mass coefflcient -vobe- The lerger the suctlon quentity the smaller
the Reynolds number at which the respective cp - curve separates from
the drag curve of the plate without suction and is transformed, after a
-2v
certein transition region, into the asymptotic curve cgp = T 2

« The
o
Reynolds number at which the latter is reached 1s the larger, the
smaller the suction quantity.

The drag coefficlents given here represent the total drag of the
plate with suction. No specisl sink drag is added (compare reference 10)
since for continuous suction, as in the present case, the sucked particles
of fluid have already given up their entire x- momentum in the boundary
layer so that this momentum is contalned in the friction drag.

In order to obtain the totel drag power of the plate with suction,
however, one must, aside from the drag given here, teke into account the
blower power of the suction.

(v) The Plate Stegnation Point Flow with Homogensous Suction

Another speclal case which cen be solved in closed form is the plane
stagnation polnt flow with homogeneous suction. Since for this case the
exact solution from the differential equations of the boundary layer has
been given elsewhere (reference 9) it shall also briefly be treated here.
The potential flow is U(x) = ujx eand the suction velocity
vo(x) = v,(0) = voo <O. If the integral curve of equation (28) is to
have a finite value at the stegnation point x = 0, there has to be
G(n, El) = 03 this in turn requires, as was discussed in detail in
chapter IV ¢, F(:, A1) = 0. F(:, A1) 1is given by equation (33). The
values of Ay, A3, which belong together follow from ity they give for

the general case the initial values of the boundsry layer celculation at
the stagnetion point; for the present case of stagnation point flow they
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immediately give the complete solution since the boundery layer thickness
and ell other pareameters are independent of the length of growing boundary
layer x. Besides A3, A one further obtalns K according to

equation (1k), g according to equation (17), &%/ according to
equation (19), end ko, &nd K, according to equation (31). The mass

coefficient Cq = —Z90. is obtained according to equation (34). From K,
fus'v

finally follows § &and therewith ©%*. The resulis are compiled in

table 4. Naturally, momentum and displacement thickness decrease with

increasing suctlon quantity. With Co—> « the form parameter &%/3

approaches the value 2 of the asymptotic suction profile. In figure 1k

9 fur/v end &%) uy/v are plotted against C, and compared with the
exact solution. The agreement i1s quite satisfactory.

As conclusion of these considerations of the speclal cases the
characteristic boundery leyer perameters for these speclal cases are
campiled in the following table.



Boundary Layer Parameters for Vearious Speciel Cases

Cape K A A1 3 K1 'BB'; 8%'_ =g %'_*
Plate without suction -1 0 0 0 0 | .08} 0.410 | 2.66
Stegnation polut flov | o.6u53 | 0.3547 o | 0019 | o | 1.058|0.u7 | 2.37
(Beparation potnt 2,09 | gor o1 ag| TeQ) | 00721 | 2(cq)| 1.289| 0.256 | .6
Sepfciﬁiﬁn? ii:.xc;tH&rtree £(x, M) £03) fleg) |{-0.06821 | £eg)| £lcg) | £(cg) | k.03
Asynggﬁ}: suction o o 1 0 _% 1 % 5 |
VI. BEXAMPLES®
In this sectlon the msw method shall be trisd on & few more exsmples

(a) Circuler Cyiinder

As first example the clrcular cylinder with homogeneous suction hes been calculated for
various suction quentities Co. The results (displecement thickness B* and form parameter x)

b

B o PR N M d
© The numerical ceiculations of thie secti by Mr. A. Ulrich.

n have been carrled ou

[y
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are given in figure 15. For the case without suctlion o = 101.7° results
as separation point; this 1s slightly further to the front than for the
customary Pohlhausen method (¢ = 108.9°) for which the calculation was
performed elsewhere (reference 7). With increasing suction guentity
results a reduction of the boundary leyer thickness and a shifting of the
separation polint toward the rear.

In order to completely avoid the separation for the circular cylinder,
it is probably useful to select not a homogeneous suction along the
contour, as in the present case, but a distribution of vo(x) which has
considerably Ybrger velues on the rear themn on the foreside. ESuch
calculations mey alsoc be cearried out according to the present method
without edditional expenditure of time.

A comparison of the present approximate calculation with an exact
calculation by K. Bussmann (reference 17) for the displacement and
momentum thickness is given in figure 16. The latter calculation is a
development in power series starting from the stasgnation point, as first
indicated by Blasius (reference 11}. Except for the neighborhood of
the seperation point the sgreement 1s qulte satisfactory.

(b) Symmetrical Joukowsky Profiles for cgz = 0

As pecond exsmple & symmetrical Joukowsky profile of 15 percent
thickness has been calculated for cg = 0, also with homogeneous
suction. The suction extends over the entire contour. The same profile
without suction has been calculated elsewhere (reference T7), also
according to the Pohlhausen method. Here, too, a reduction of the
boundery layer thickness and a shifting of the separation point toward
the reer results with increasing suction quantity. For the suctlon
quantity Co = 0.417, that is f3(0) = 3, a separation does no longer
occur.

VII. SUMMARY

A method of approximation for calculation of the laminesr boundary
layer with suction for arbltrary body contour and arbitrary distribution
of the suction gquantity along the contour of the body in the flow 1s
developed. The method is related to the well-known Pohlhausen method for
calculation of the laminer boundary layer without suction. The calculatlon
requires the integration of a differentiasl equation of the filrst order
according to the lsocline method. The method is applied to several special
cases for which there also exlst, in part, exact solutions: Plate in longi-—
tudinal flow and plane stagnation point flow wlth homogeneous suction.
Furthermore the circular cylinder and symmetrical Joukowsky profile with
homogeneous suction were calculated as examples.

Translated by Mery L. Mahler
National Advisory Committee
for Aeronautics
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VIII. APPENDIXES

APPENDIX I
Concerning the Length of Growing Boundery Layer for the Plane Plate

wlth Homogeneous Suction

According to equation (T1) is

T
d._g__ d.}.-l- _ } F-<4ia chl
Ay @-&- Ay o) at = (1 )"l) 1 - o (1)

From equation (62) one finds:

dg (1 - ea1) (oL + 2porg) + 2¢(1 - A1) (o + PIM1 + PEKI?)
v
1

(1 - cxl)h

Py + 20p, + (pye + 2po)ny
(1 - cxl)3

(1,1)

- Bubstitution of equations(I,l) and (62) into equation (Tl) gives:



n
. |PetEadL ¥ oM ” pL + 2cpg + (p1c + 2pplrg g~ %M deg
1 2 2 21 =(1-2a) ——

f1 - ,.\..\2 11 -« a1-13 1 = Al A
L wnl/ Aok vay s - Crv]

r

1

end after multiplication by (1L - eA):

T A 221 - o) + 2 20p5) + M2(p1c + 2p0) |
[ R0+ e + ) (1 - 1) + nalay 4 20m0) + 21P(pre + 20) s (&) B @)
1 6 Ay

(1~ 03»1)2

M [ 2 3]. x at
U S— + (2P + cpa)hy + 3ApoA < - C -=(l-).)(g-ck1
(1 - aag)2 | Fo ™ 1L T SR T SRy Tt * ) Ay

ik | Mo + By + Poh® + P
By (1 - eag)?(1 - ap) (g - cx,)

with

- ont - O a4
i

P " - ~rn ! -1
0 x¥or <1 1 T Vg
Po = 3po; P3 = -~cpp J

(74)

(75)

of

9TeT °*ON WL VOVN
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APPENDIX II
Concerning the Calculation of the Drag of the Plamne Plate

with Homogeneous Suction
The calculation of

Mo £1(ny) g

F(rio) = %f )] (87)

kl=0

gives with f'(\1) according to equetion (76), 1f A is replaced by z,

A A
P lo gy 1o dz
= o3 — e
%(xlO) c3 J,Fo 2(1 - cz) X1 (rz=o (z - 1)z(1 - c2)

xlo dz A'J.O dz
+ K2 + K
4

z=0 (cz - E)Z(l - cz) =0 (cz - 1)22(1 - cz)

)"lo az
- K, ——— = T+ II + IIT + IV + V (11,1)
220 (cz - 1)=z

The integrels are solved by breeking up into pertisl fractions. One

finds:
A
P o
I=-3[an-ln(z-%-):|
c3
2=0

1 c 1 Mo
II=-K1 7.nz+c_lZn(z-l)+l_cZnG-—:|
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6 1 & n Mo
IT1 = Ko ;f'tnz+51n(z-9-ﬂcln(—,g;>
z=0
Mo
IV=K—;|:an-Zn(cz-l) -czl-l"'%z———l;i—ﬁ]
3 cz -

A

Ay
l (o]
V=K, [-ln Z + " + n(cz - l)]
cz -

0

A
1

When summed up, &ll terms with [7.:1 z] ® cencel each other » because
0

of equation (77a). After insertion of the limits the remaining terms

Xl A':L
En(cz - l{‘o ° = in{l - cAjo)s En(z - l):lo ° - In( - Mg)

A ML -cA
1 o] c
o F 4 cz - 1 0 1 - cro

z-l)2 -

[ L ]Xlo eryo(2 = ed1o)
Cc
( ° (1 - c>‘.'I.o)g

give:
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Thus there results by simplification from equation (II,1):

%(xlo) = Gg - lKJ._cc - % - K3 + K,_D in(l - chio)

+ gKl (L - Ao) + 1-‘%]{2 Zn(l - %xlo)

Ao Ky 1o0l? - oMo

1l - cxlo (l - CXlo)

- (_'K3 + Kh)

(89)

L3
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APPENDIX III

To page 30.- Table 10 gives the numerical table concerning the
veloclty distribution of figure 10.

To page 35.~ For the boundary on the plate in longitudinal flow

with homogeneous suction the exact solution from the differential
equations also was given in an unpublished report by Iglisch. A
camparison of the approximate solution above with that exact solution
is given in figures 18 and 19. TFigure 18 gives the comparison of the
displacement and momentum thickness; particularly for the displacement
thickness the agreement is good. Figure 19 gilves the comparison for the
wall shearing stress; here also the agreement is satisfactory. (So far,
these comparisons can be cerried out only for the front part of the
length of growing boundery layer, up to & = 0.5, since the exact
gsolution does not yet completely exist.) .
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TABIE 1
THE BASIC FUNCTIONS Fy AND F2
FCOR THE VELOCITY DISTRIBUTION

IN THE BOUNDARY LAYER

WITH SUCTION
n = % Fy Fp

o} 0 0

.2 .1813 .0768
b 3297 .1221
.6 4512 - .1423
.8 .5507 <1452
1.0 .6321 .1322
1.2 . 6988 .1112
1.4 <7534 ~ 0843
1.6 -7981L -0551
1.8 . 8347 .0263
2.0 . 8647 -.0017
2.2 . 8892 -.0240
2.k .9093 -.0k16
2.6 .9257 -. 0524
2.8 .9392 -.0552
3.0 .9502 -.0498
3.5 .9698 -.0302
4.0 .9817 -.0183
h.5 .9889 -.0111
5.0 .9933 -.0067
6.0 .9975 -.0025
7.0 .9991 -.0009
o 1 0
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TABLE 2
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PARAMETER OF BOUNDARY LAYER WITH SUCTION

) T O3 I - I A
K o |8=5|8 "8 9 | w WU
ao 0.5 1 2 1 .5
1 -4931 10009 2'05 ‘952}4‘ '}'"696
.2 48561 1.018 |2.10 | .90hT | .4393
.3 47791 1.027 |2.15 | .85T1 | k096
' .1696) 1.036 }2.21 | .809% | .3801
.5 46081 1.0k5 |2.27 | .7618 | .3510
.6 45161 1.054 [2.33 ] .7ak2 | .3225
b szl ub2| 1.058 [2.37 | .6926 | -3097
T A9l 1.063 |2.B1 | .6665 | .2945
.8 4317 1.072 | 2.48 6189 | .2672
.9 4210 r.08 |2.57T | .-5T12 | .2405
1.0 4099 { 1.090 |2.66 ] .5236 | .2146
1.1 .3982 | 1.099 |{2.76 | .4760 | .18095
1.2 .3862 | 1.108 |2.87 | .u283 | .165k
1.3 .3736] 1.117 }2.99 | .3807 | .1hk6L
1.4 .3606| 1.126 }|3.12 { .3330 | .1201
1.5 3471 | 1.135 | 3.27 | .2854 | .0991
1.6 .3331 | 1.1h% |3.%3 | .2378 | .0792
1.7 .3186| 1.153 [3.62 | .1901 | .0606
1.8 .3037 1 1.162 |3.82 | .1425 | .0433
1.9 .2883 | 1.171 | %.09 o948 | .0273
2.0 2724 | 1.180 | 4.33 okT2 | .0129
42,009 | .2562 | 1.189 | h4.6: |O

aAsymptotic _suction profile.

Stagnation point wilthout suction.

CPlane plate without suction.
eparation point.
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TABLE 3
THE FUNCTION G(%,%3) FOR THE INTEGRATION

OF THE DIFFERENTIAL EQUATTON

OF THE MOMENTUM THICKNESS

Ky = 0 without suction ko= 0.1
A M g {G(k,8) r M £ |G(k,k)
0.50 0 | 0.108 | -0.2042 | 0.5 0.206 | 0.1132 | -0.333
45 .0937 | -.1323 h .210| .0875 | -.192
.40 0816 | -.0621 .3 2151 .0827 | =-.057
. 3547 .0709 | O 0 .0520 | ©
.30 .0586 .0729 .2 .221 | .okol .072
.25 <OLTT .1375 .1 .2271 .0190 .190
-20 - 0373 .200L| O 235 |0 300
.15 .0273 2607 -.2 .250 | -.0330 -490
.10 <0177 .3191) -k .270 | -.0550 . 635
.05 .0086 .3753) --6 .290 | -.0T710 .Th2
0 0 L2g2| -.8 .320 | =.07T5 . 792
=1 -.0159 .5301 | -1.099 -.0721 - 758
-.2 -.0298 | .e13| e < 0.2
-3 -.0L419 . 7023 1= >
-4 -.0526 .TT30| A M % G
-5 -.0602 | .8330f 0.5 [0.405[0.1213 |-0-%50 |
-.6 -.0666 . 8820 .4 4151 .0936 | ~-.310
-7 -.0711 .9198; .3 2k | L06TH | -.172
-.8 -.0738 -9470 .2 4321 .ok31} -.095
--9 -.0748 947 .0350 | 0
-1.0 -.07h2 9656} .1 443 | 0205 .077
-1.099 | | --072L 95841 o 5k | o .188
A -.0682 -.2 .480 | -.0355 .370
-4 -515 | =.0590 .516
-.6 557 | =.0770 . 620
-.8 620 | -.0835 <657
-1.099 -.0721 .558
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TABLE 3 - Concluded
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THE FUNCTION G(k,ky) FOR THE INTEGRATION

OF THE DIFFERENTTIAL EQUATION OF THE

MOMENTUM THICKNESS - Concluded

Kl = 0.3 El = 0.5
A AL " G(r,x1) ] A1 K G(%, %)
0.5 0.590 | 0.1292 | -0.542 0.4 0.935 | 0.113 | -0.475
b .600 | .100 -.400 .3 .950 | .085| =~-.350
.3 61| .0122] -.265 .2 965} .0538( =.225
.2 622 | .ou63 | -.136 .1 .98 | .0220| -.100
1 637 | 02221 -.016 0 1.0 0 o}
.0192{ o -.2 1.045 | ~.0460 .195
0 .652 |0 .099 -4 1.115 | -.0810 .320
-.2 .688 | -.0380 .204
-4 .738 | -. 0660 438 | -1.099 -.0721 | -.0L2
-.6 .808 | -.0830 <520 ko = 0.6
-.8 .892 | -.0910 .555 1 :
-1.099 | 1.172 | -.0721 .358 2\ M i alk, "l)
k1 = Ok 0.3 | 1.116]0.088 [ -0.327
A M K G(r,rq) 2 |1.122] .05 | -.206
.1 1.135| .020 -.072
0.4 0.770 | 0.1068 | =0.460 0 1.15% | 0 0
.3 7821 o777 -.32h -.2 1.200 | -.048 <190
.2 .800 | .0500| =.200 -4 1.254 | -.086 340
.1 8151 .0202) -.080
.008 0 Ky =0.7
0 .835 | 0 .035
-.2 875 | -.0l15| .232 A M k| Glk,kg)
-4 .935 | -.0730 .37 | 0.3 | r.294[0.089 | -0.125
-1.099 -.0721 158 2 | 1.292| .059 -.082
.1 1.296 | .030 -.005
0 1.30k )0 .089
-.2 1.3381} -.054 262
-4 1.401 | -.096 . ho2




TABLE 4

INITTAL VAIUES OF THE PLANE STAGRATION POINT FLOW WITH SUCTION

M|o» X c S PN I P IR R g
1 g ko {1k | Co |7 J,, Vuv 511.,, o
0 |0.355 |-0.645 | 0.LUT | 0.0709 |0 0 2.37 | 0-266 | 0.631 | 0.595 [1.163
2| 262 | -~.600| 452 | .0536 | .090%| .390}2.33| .232| .5k0 | .513 [1.39
M| .177 | -.530| -W59 | .0372 | .18k | .953 |2.281 .193 | .4hO | .420 [1.TB
514 .139 | -.413| 463 .0299 | .230 | 1.345(2.25| .173| 3% | .37k |2.07
.6| -100 | ~.420 | .468| .0219 | .281 | 1.900 |2.22| .148{ .329| .316 |2.53
T .00 | -.3%6| .7u| .0155 | .332 | 2.67 |2.18]| .125 | .271 | .26% [3.16
8| .ou2 | -.256] .u81| .0098 | .385 | 3.80 [2.12| .099 | .210| .206 |4.26
1.0lo0 0 .500 | 0 500 | 2 0 0 0 )

9T2T *ON WL YOVN
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TABLE 5

THE BOUNDARY -LAYER PARAMETERS AT THE PLANE PLATE
IN LONGITUDINAL FLOW WITE HOMOGENEOUS SUCTION;

LENGTH OF GROWING BOUNDARY LAYER .

£ ; ¥ g* “voB% [T B% To :
Xl X 5l 9 v l-’-Uo 'pvoUo r
0 0 1 1.090 |2.66 |0 0.572 o 0
0.000171] .02 | .989 [1.089 [2.65 | .0218 | .576 |26.43 .0131
.000662f .0k | .979 |1.088 [2.64 | .0u35 | .581 [13.3h .0257
. 00154 .06 .968 11.087 |2.63 | .0652 | .586 | 8.98 .0392
. 00291, .08 .95611.086 {2.62 | .0869 | .591 | 6.80 . 0540
. 00456 10| .945 11.085 {2.6L | .1085 | .597 | 5.50 . 0676
.01139 151 .916{1.083 [2.58 | .164 | .610 | 3.76 .1068
.02037 20| .884 {1.08 {2.55 | .2159 | .65 | 2.8 .1426
. 0341 251 .851 [1.077 |2.53 | .2602 | .640 | 2.38 .1845
. 0517 .30 .87 1}1.074 |2.50 | .3221 | .656 | 2.0k 227
0783 .35| .780 {1.070 |2.47 | .3T46 | .673 { 1.80 .280
1124 4O oTHL | 1.067 {2.4% | 4267 | .690 | 1.607 | .335
<1551 451 .700 [1.063 [2.41 | (4784 | .707 | 1.48L | .39L
.2127 50| .656{1.059 {2.37 | .5296 | .728 | 1.375 | .hé&L
.2879 .55 .610 {1.055 |2.34 | .5802 | .T49 | 1.290| .536
.3883 .60} .560|1.050 {2.31 | .6303 | .770 | 1.222 | .é2k
. 5209 65 .507 [1.046 |2.27 | .679T | -T93 | 1.267| .Te2
. 7091 70| 450 |1.041 }2.24 | 7284 | .817 § 1.122 ] .82
L9756 T5) -3891.035 [2.20 | .7763 | .843 | 1.086| .988
1.373 .80 .323{1.029 [2.16 ]| .833 | .87L | 1.058|{1.172
2.007 .85 .252 |1.023 [2.12 | .8693 | .900 | 1.035 |1.416
3.163 .90 .175/1.016 {2.08 | .9142 | .931 | 1.018|1.78
5. 840 95| .091 }1.008 {2.04 | .9578 | .964 | 1.007 | 2.415
10.556 .981 .037{21.003 |2.02 | .9833 | .985 | 1.002 | 3.250
1k.733 .99| .019 {1.002 12.01 | .9917 | .993 | 1.001 | 3.835
® 1.00|0 1 2 1 1 1 o
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DRAG AW OF THE PLANE PLATE IN LONGITUDINAL FLOW

TABLE 6

WITH HOMOGENECUS SUCTION

A t = £(r) F(ry1) G(r1)
0 0 0 o
.01 . 0000406 .00L665 [115.02
.02 . 0001706 .008882 | 52.08
.03 . 0003682 .012732 | 34.56
0L . 0006612 .016623 | 25.1h
.06 . 001535 02646 17.29
.08 . 002909 .03608 12.40
.10 . 00456 . 04719 10.35
.15 .01139 . 07427 6.528
.20 .02037 .10506 5.159
.25 . 03405 .13949 L.096
.30 .05172 .18066 3.493
.35 .07833 .23006 2.937
.40 112k .2872 2.556
45 .1551 +3539 2.281
<50 2127 <4357 2.048
.55 .2879 <5357 1.86.
.60 .3883 . 6614 1.70k
.65 .5209 8199 1.57h
.70 . 7091 1.0347 1.459
.75 9756 1.3284 1.362
.80 1.3731 1.7538 1.277
.85 2.0075 2.4165 1.20k
.90 3.1630 3.6018 1.139
.95 5. 8403 6.3098 1.080
.98 10.556 11.043 1.046
.99 | 1k.T3 15.23 1.03k
.992 |16.15 16.64 1.031
.994 [18.01 18.51 1.0275
.996 | 20.69 21.19 1.0241
997 | 22.6 23.12 1.0220
.998 | 25.37 25.87 1.0196
.999 | 30.11 30.6L 1.0166
.9995 | 34.90 35.40 1.0143
1 o o 1
cf
ot G(xy)
-V
wa = ""Q

o3
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TABLE 7
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PARAMETERS FOR THE VELOCITY DISTRIBUTION OVER THE LENGTH OF GROWING

BOUNDARY LAYER FOR THE PLANE PLATE IN LONGITUDINAL FLOW

WITH HOMOGENEOUS SUCTION (TO FIG. 12)

8 M x A M X

0 0 1 1.0 0.T54 0.384
.1 143 .919 1.4 . 848 .255
.2 267 .80 1.8 .902 17
" 453 .696 3.0 973 .053
.6 -590 573 ® 1 o
.8 .685 467
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RESULTS OF THE BOUNDARY LAYER CALCULATIONS

TABLE 8

FOR THE CIRCULAR CYLINDER WITH SUCTION

(a) Co=0
*

o° 1% g " ﬁ..eB §§ \’ ——“‘;R K A A K

o] o] 0.1883] 0.4k2 0.0709 0.355 {0 }0.653

N L0608 .188i| .Lu3 .0708 -355 - 653

8 .1396| .1888}f .4hé .0705 .353 <657
12 2094 | .1892] 4L . 0700 <350 . 660
16 2793 | .1897| .448 .0606 .348 . 662
20 .349 .1913| .b52 . 0668 .345 . 664
25 436 94k L459 . 0685 .343 . 665
30 524 .1985) 469 .0682 .342 . 667
35 .61 .2030} 479 . 0675 340 - 669
Lo . 698 .20T1L| .488 <0657 .333 | | . 673
45 .85 .2128| .502 .0641 -325 | . 680
50 .873 2129 .522 . 0612 .312 . 690
55 .959 .2259| .5hk0 .0585 .300 . 703
€0 1.0L7 .2326f .563 . 0541 .280 . 720
65 1.13% 24381 .591 .0502 .260 . T4
T0 1.222 .2552| .623 .Olk6 .232 .TT70
T5 1.309 .2608| .669 .0377 .202 . 805
8o 1.396 2881} .726 .0288 156 . 850
85 1.5484 .3087| .790 .0166 . 094 .905
90 1.5T1 .3332{ .886 o} 0 1.000
95 1.658 .3583| 1.010 -.0223 -.141 1.15

100 1.746 .3937| 1.2ko0 -.0538 -. 420 1.3%
s 101.7|1.776 | .hog2| 1.290 | -.0682 -.682 |V |1.hy

25
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TABLE 8 - Continued
RESULTS OF THE BOUNDARY-LAYER CALCULATIONS - Continued
(b) Cq = 0.5
o g8 3 gﬁ &% _Q_R R ® ok
® R YV |®lV 1 » A X135
0 0 0.1573 | 0.3681 {0.0495 | 0.1112 | 0.240 {0.250 |0.580 { 2.3k
b .0698| .1575 | .3686 | .0k95| .11k | .240 | .250 | .580
8 .1396 | .1587 § .3TLk | .ouohi{ .1122| .240 | .250 | .580
12 2094 | .1598 | .3739 | .0493( .1130( .240 | .250 | .58L
16 .2793 | .1605 | .3756 | .o492| .1137| .24k0 | .250 | .58
20 .349 169 | .3788 ) .ok90| .11b5| .240 | .250 | .584 | 2.342
25 436 L1634 | .38k | .ou87| .1155( .238 | .252 | .585
30 . 524 1658 | .3880 ] .ok82}  .1172} .234 | .255 | .587
35 <611 1695 | .3966F .ObTL} .1199| .225 | .260 | .589
40 . 698 1726 | .40k .Ok56| .1220| .220 | .267 | .592 | 2.343
45 . 785 L1766 | 413 Ookly | L1249 .215 | .275 | .595 _
50 .873 .1821 | .426 04301 .1288| .208 | .290 | .601
55 .959 1871 | .4k .0403 | .1323} .195 | .297 | .608
60 | 1.047 .1937 | .455 .0375{ .1370| -185 | .305| .65
65 1.134 .2012 | 473 «0331} .1lhk22) .16h | .315 | .622]2.35
70 1.222 .2097 | .495 .0R87| .n48} .141 | .329 | .630
5 1.309 .2181 | .515 .0230} .1542] .115| .3%0 | .640
8 | 1.396 | .2289 | .543 .0170| .19 .08 | .360 | .665]| 2.37
85 1.484 2470 | .593 .0109 | .1747( .057 | .375 | -695
90 1.571 2683 | .645 O 189710 410} .735(2.40
95 | 1.658 .2881 | .709 |-.01h4k| .2037| -.075 | 462 | .78
100 1.746 .3123 | .835 |~-.0338} .2208| -.185 | .525 | .88L| 2.67
105 1.833 3421 | .978 {-.0606| .2419| -.415 | .610 {1.06
S 106.4| 1.854 .3522 {1.004 |-.0682} .2490| -.452 | .625 [1.18 | 2.8k
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TABLE 8 - Continued
RESULTS OF THE BOUNDARY LAYER CALCULATIONS - Continued
(¢) Co=1
8 3 [UoR | 5% [UoR

9° : lg@fv|zVv | * | = | » | m]| %
o} 0 0.1350 { 0.3071 |0.0365 | 0.1909 | 0.170 [0.415 |0.525
by .0608| .1350] .3071 L0364 | .1909 | .170 | .M15 | .525
8 .1396| .13%1 | .30T7hk 0362 | .1921{ .170 | 415 | .525
12 2094 | .1360 | .3094 0362 | .1923 | .170 | -415 | .525
16 27931 .1367| -3109 0361 | .1933} .169 | .MT | .525
20 .349 1373 | .3124 0354 | .1942 | .166 | .420 | .525
25 436 .1383 | .3146 o347 | .1956| .162 | .ke5 | .524
30 .52 .1k00 | .3178 0339 | .1966| .156 | .430 | .523
35 611 14191 .3221 0330 | .2007| .153 | .4k0 | .522
ko . 698 Aauk2 | L3273 0319} .2039 | .150 | .b4uh5 | .521
45 785 1466 | .3328 o30k | .2073 | .1s2 | .B55 | .520
50 .873 1491 | .3385 028 | .2106| .135 | .470 | .519
55 .959 | .1532 | .3478 0269 | .2167 | .127 | .485 | .517
€0 1.047 .1595 | .3613 o254 | .2256 | .122 | .495 | .515
65 1.134 1665 .3762 0234 { .2355| .107 | .512 | .509
T0 1.222 1729 | .380 0205 | .2u451| .098 | .531 | .500
15 1.309 795 | 394 0L67T| .2538 | .O0TT | .554 | .500
80 1.396 1860 | .B1O o121 | .2643}| .055 | .58 | .508
85 1.484 2942 | 435 .0066 | .2746 o31 | .600 | .515
90 1.571 2017 | .450 0 .2852 |0 .630 | .520
95 1.658 .2090 | .476 -.0076| .2956 | -.040 | .668 | .535
100 1.746 .2207 | .507 -.0169| .3121 |-.088 | .70 | .560
105 1.833 2291 | .539 -.0272 | .3240 | =-.140 | .TT5 | .592
110 1.920 .2500 | .598 -.0438 | .3436|-.225 | .825 | .680
115 2.008 2775 1 .T00 -.0651{ .3642 |-.357T | .850 | .835
S 115.5 | 2.016 2814 | 715 -.0682| .3697|-.375| .870 | .870
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TABLE 8 - Continued
RESULTS OF THE BOUNDARY LAYER CALCULATIONS - Continued
(d_) Co = 2
& 3 /U p* fUoR
@ i ﬁ\/ < S 8y » M| X

0 o] 0.1030 | 0.2281 {0.0212 | 0.2913 { 0.090.] 0.620 [0.420"
b 0698} .1030 | .2281 .0211} .2913| .090} .20 | .420
8 1396 .1l031 | .2284 .0210 | .2918| .090| .620 | .k2o
12 .209% | .2034 | .2290 .0208 | .2925{ .087| .621 | .419
16 .2793 | .1039| .2301 0205 | .2939| .083 ¢ .623 | .418
20 .349 .10k | .2312 .0198] .2953 | .0T9| .625 | .L416
25 436 | .1050 | .2326 | .019% | .2970( .075| .628 | .44
30 .52 .1055 | .2340 0190 § .2984 | .073} .632 | .412
35 Nk 1068 | .23& 018 | .3021| .07} .638 | .40
Lo .590 .1078 | .2382 0178 .3049 | .060| .645 ) .LOS
145 .85 .1091 | .2hk00 .0168 | .3086) .068) .65k | .399
50 .873 1106} .2437 0157 | .3128 | .066| .665 | .394
55 .959 21123 | 2472 045 | 3176 .064 | 67T | .388
60 1.047 .1153 | .2524 .0133 | .326L}{ .060| .690 | .38
65 1.134 .1187 | .2580 0119 .3357T| .052| .70 | .370
70 1.222 21217 | 2647 L0101 | .3442 | .ok5 | .735 | .360
5 1.309 1252 | .2712 .008L | .3541 | .035| .755 | .350
80 1.396 1289 | .2795 .0058 | .3646| .025| .75 | .340
8 |1.k8; L1334 | .2881 .0031| .3773] .012| .795 | .325
90 1.571 -1393 | .3002 |O 3940 {0 851 .310
95 1.658 1460 .3132 | -.0040 | .4129 [-.020 ) .845 ] .295
100 1.746 1543 | .3290 | -.0083 ) .4364 {-.0h0 | .890 | .278
105 1.833 .1631 | .3464 | -.0138| .4A3 |-.068 .925 | .255
110 1.920 A721 4 .3660 | -.0202) .u4B6B|-.1001} .980 | .225
115 2.008 .1860 | .3891 | -.0306| .526 |-.1k0 |1.055 | .190
120 2.095 .2015 | .h415 -.0406] .570 |-.185 }1.190 | .120
125 2.183 2205 | 452 -.0557{ .635 |-.220 |1.260 | .038
8 127.5 | 2.227 2372 | .h72 -.0682 | .67T1 |-.305 }1.305 |~-.020
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TABLE 8 - Concluded

RESULTS OF THE BOUNDARY-LAYER CALCULATIONS - Concluded

(e) Velocity Distribution

lo) 8 Um R dﬂm
v R % 05 &
0 0 0 2

4 . 0698 .140 1.995

8 .1396 .278 1.981
12 .209h 416 1.956
16 .2793 .551 1.932
20 .349 . 684 1.879
25 436 845 1.813
30 .52k 1 1.732
35 <61 1.147 1.638
4o . 698 1.286 1.532
L5 -7185 1.b1k 1.4k
50 .873 1.532 1.286
55 .959 1.638 1.147
60 1.047 1.732 1

65 1.134 1.813 845
T0 1.222 1.879 . 684
75 1.308 1.932 518
80 1.396 1.970 <347
85 1.484 1.992 ATk
90 1.571 2 0
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TABLE 9

RESULTS OF THE BOUNDARY-LAYER CALCULATION FOR THE SYMMETRICAL
JOUKOWSKY PROFILE J 015 FOR c¢g = O

(2) fl(o) = 0} Co =0

%
9° e %‘)/'FS—? L ol X
180 0 0.0370 | 0.0878 1 0.0708 0 0.355 0 0. 650
177.5) -0493 | .0377T| .0895| .0697 - 349 - 653
175 00986 | .oko5| .0964} .067h <335 .66
I72.5] .0148 .0438| .1048] .0630 .319 . 682
170 .0197 L0485 1 1167 .0581 .298 . 703
165 .0308 .0605| .1480| .okés 247 . 753
160 .okl .0755| .1885| .0351 .197 . 802
150 Moy (I L1109 | .284 .0193 .108 . 892
140 .1233 572 .ha .0053 .030 .964
136 L1LU5 AT72} Wb72 O 0 1.000
130 775 2082 (| .559 | -.0089 -.052 1.062
120 021"'16 02&8 17}"'2 e 02& --172 l-l&
110 .3132 .3217( .960 | -.0u84 N -.362 1.367
s 101.9| .377 .3748 | 1.310 | -.0680 -8 |V 11.867
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TABLE 9 - Continued

RESULTS OF THE BOUNDARY-LAYER CALCULATION - Continued

61

(b) fl(o) s 0.5 Co = 0.0695
t t
¢ e ?F&‘ L » | M E
180 0.0359 | 0.0846 | 0.0667 { 0.0180 | 0.335 | 0.0kl | 0.640
177.5| -.00493 | .0366| .0867| .0658| .0183| .331| .045 | .645
175 .00986 | .0391| .0927| .0634 | .0196| .322| .Ok6 | .654
172.5| .0148 0830} .1025} .0603§ .0215| .307| .Ou7 | .67k
170 .0197 Oou7h | .11h0| .0556| .0237| .283) .05L | .690
165 .0308 .0580 | .1416| .0430] .0299| .227| .060 | .T3%
160 . Ollily 0737 | .1830 | .0334] .0368} .18 | .o74 | .TT3
150 076 1072 | .268 .0169| .0540} .100| .110} .833
140 .1233 LAk | 367 0045 | .0720| .024| .154 | .867
136 <1445 631 .45 o .0790 ] 0 173 | .88
130 1775 .1850 | .483 |-.007L] .0913{-.035{ .203 | .906
120 2416 .227h | .620 | -.0200{ -1137( -.-112| .255 | .976
110 -3132 .2793 | .76+ | -.0356| .1397} -.225| .316 |1.075
100 .391 .3339| .96 |-.0530| .1669]-.360| .38k [1.200
S 92.4| 4575 S3742 | 1.225 | -.0682 ] .187T1 | -.505| .4k0 [1.310
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TABILE 9 - Continued

RESULTS:OF THE BOUNDARY-LAYER CALCULATION - Continued

(¢) £1(0) =1.0; Co = 0.139

9 UOt 5% t

¢° ST SR S "3 A MoK
—
180 0 0.0348 | 0.08619 | 0.0626 | 0.0348 | 0.314 | 0.077 {0.631
177.5) .00493 | .0358 | .o842| .066| .0358| .313| .0T9 | .€31
175 -00986 | .0382  .0900| .0605| .0388| .308| .085 | .6%0

172.5| .0148 .0416 | .0985| .0564{ .0MO3| .293| .095 | .653
170 .0197 0460 | .1095| .0516| .0450 | .265| .104 | .667
165 .0308 .0560 | 1345  .0376| .0560) .205| .128 | .7T03
160 .okl .0686 | .1678| .0292 | .0678| .154| .156 1 .Tu48
150 -OT6k .0985 | .2u43 .0152| .09851} .080| .223| .776
140 .1233 L1342 | .332 .0038 | .1340| .020| .300! .788

136 <1k45 L1484 | .368 |0 1478 (0 .335 | .795
130 1775 1682 | 421 | -.0059 | .1682 | -.032| .38 | .80
120 2416 .2030 ) .505 | -.0162| .2025|-.084| .465 | .B06
110 .3132 .2385| .595 | -.0270| .2hoo | -.1k2| .556 | .89
100 .391 .2790 | .696 | -.0380| .2800{-.200| .650 | .82
90 475 .3200 | .800 | -.0499 | .3203 ! -.267| .750 | .88

8o .56L .362 .916 | -.0636| .3622}-.343| .858 | .830

s Té.4| .593 .376 952 | -.0682 | .3766|-.38} .892 | .86
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TABLE 9 - Contlnued

RESULTS OF THE BOUNDARY ~-LAYER CALCULATION - Continued

63

(a) £4(0) =1.5; C, = 0.2085
1 © t

180 0 .0336 | 0.0792 | 0.058k | 0.050k4 | 0.295 | 0.110 |0.635
177.5f .00493 | .0351| .o084| .0592 ) .0526| .293| .116 | .635
175 .00986 | .0372| .0878| .0580| .0557| .28L| .125 | .639
172.5| .0148 .ohok | .0958| .0531] .0606) .265| .136{ .648
170 .0197 o2 | .1052| .ouB82| .0662f .202| .150 | .658
165 .0308 .054 | .1201 | .0376f .0816| .192! .18L | .690
160 .Olikl .0675| .1596| .0280 | .0980 | .145] .220 | .705
150 Noy( L0927 .224 .0135} .1391| .070{ .310 | .T22
140 .1233 L1249 | .207 .0027| .1852| .016} .k5| .78
136 145 13681 .325 |0 205 {0 L5h | L7002
120 ATT5 15431 .365 | -.0046| .230 | -.01k| .512 | .669
120 2116 185} .hk30 |-.0127| .272 | -.060| .605 | .630
110 .3132 .2107! .490 | =-.0202| .315 | -.09T] .698 | .596
100 .391 .2388| .546 }-.0276| .359 | -.-132| .785 | .566
90 475 .2683 | .@0 |-.0356| .hol | -.165{ .870 | .529
80 .561 2981 | .668 | -.0432| .443 | -.198] .950 | .486
T0 . 645 .3255| .726 }-.0504| .487 | -.230}1.03% |} .k30
€0 <734 .3555| .770 | -.0578}( .531 | -.260}1.11k | .350
50 .87 .3789| .808 |-.0637| .568 | -.286]1.190 | .250
8 4o .885 4027 .835 | -.0682| .60k | -.305{1.265 | .150
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TABLE 9 - Continued

RESULTS OF THE BOUNDARY-LAYER CALCULATION - Continued

(e) £3(0) = 3.0; Co = 0.417

* 0%

¥ ek e " > Mo X
180 0 0.0307 | 0.0720 | 0.050k | 0.0921 | 0.2k2 | 0.210 | 0.602
177.5| .ook93 | .0323} .0755| .0511| .o9ko| .24 .213 | .603
175 00986} .0342 | .0795| .049h| .1026]) .229f .225 | .60k
172.5) .0148 .0365| .0852| .ok33| .1095| .212| .240 | .609
170 .0197 .0398 | .0900{ .0391 | .119%]| .195]| .260 | .62
165 .0308 .0486 | .1150| .0300]| .1398} .157}| .310 | .620
160 .ok | .0587| .136 | .0216| .1705| .107| -376| -610
150 .O76k L0794 | .184 .0099 | .238 -05L| .530 | .570
140 .1233 10151 .231 .0022 | .309 o1l .666 | .502
136 . 14kS 1118} .28 }o 335 | O ST | oLhT
130 1775 1240 ] .270 [ -.0032) .370 | -.016{ .78 | .he22
120 2416 1435 ¢ .303 | -.0080 | .425 | -.033] .880 | .306
110 .3132 2159k | .333 [ -.0L19 | .476 | -.049| .970 | .153
100 <391 7451 358 | -.01481 .522 | -.060|1.045 | .022
90 U475 .188 | .37% | -.0172| .564 | -.0681}21.110 |-.090
80 .561L .2006| .396 | -.0197{ .600 | =.072|1.172 {-.180
70 . 645 2109 | .410 | -.0212| .633 | -.075{1.230 |-.230
60 .73k 2218 .24 [ -.0226| .663 | -.078}{1.280 {-.270
50 . 807 2302 | .439 | -.0234| .691 | -.079|1.326 {-.300
4o .885 .2383 | 452 | -.0238| .75 | -.080|1.336 {~.330
30 -9k5 .2hho| .64 | -.0248|..732 | -.080]1.340 [-.350
20 990 2486 | 470 | -.0256| .Th6 | -.080|1.34k |-.360
10 | 1.018 2512 | 476 | -.0259 | .75% | -.080(1.348 |-.360
0 | 1.028 2522 | 479 | -.026L | .T757 | -.080{1.350 [-.360

no separation
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TABLE 9 - Concluded

RESULTS OF THE BOUNDARY-LAYER CALCULATIOR - Continued

(f) Velocity Distribution

o ] U L dau
q) + Uo Uo ds
180 0 0 51.7
177.5 .00493 .231 49.1
175 .00986 k5 he.2
172.5 .0148 .632 32.6
170 0197 .78 24,7
165 .0308 .993 12.69
160 .Olslihy 1.111 6.16
150 0764 1.233 1.572
1%0 .1233 1.270 .215
136 L1Lh5 1.271 0
130 LATT5 1.267 -.209
120 2416 1.245 -.387
110 .313 1.212 -. 468
100 .391 1.178 -.485
90 L475 1.136 -.487
8o .561 1.095 -. 487
T0 . 645 1.053 -.475
60 T34 1.01% -.458
50 .807 977 - )42
40 .885 .9L45 -.420
30 .945 .917 -.416
20 .990 .899 - ual
10 1.018 .88 -.410
0 1.028 .88y -.410




66

NACA ™ No., 1216

TABLE 10
VELOCITY DISTRIBUTIOR OVER THE REGION OF GROWING BOUNDARY LAYER

FOR THE PLATE WITH HOMOGENEOUS SUCTION

yE = 0.1 f€ = 0.2 {g = 0.4 Ve =0.6 yt = 0.8
oy u - » - LY = 2 -4 L
v 0o v U, v U, v Uo v Uo

0 0 0 0 o} 0 o} o} 0 0
.0286 .1108 .0534 .1168 . 0910 .1279 118 -1373 .137 .1455
L0572 12176 .1068 2270 .1820 .2448 .236 .2598 274 2727
.0858 .3205 .1602 + 3317 .273 .3522 .35h4 .3697 1 .3848
2kk | Lba73 | .2136 | L4287 | .36k Lot | b2 4676 | 548 .4830
<143 .5107 267 L5211 455 .5302 590 -5564 .685 - 570k
.1TL6 5967 . 3204 . 6054 .546 .6215 . 708 .6351 .822 .H69
.2002 6760 .3738 . 6826 . 637 . 6948 .86 . 7051 .959 «Tihl
.2288 STHTS 4272 . 7518 . 728 <7598 .94k .7666 | 1.096 T2k
25Tk . 8105 . 4806 L8126 .819 .8L64 | 1.062 .8196 | 1.233 L8221
.286 . 8663 .5340 .B6AL .910 .8659 | 1.18 .8657 | 1.370 . 8655
.3146 .9112 . 5874 .9094 | 1.001 .9059 | 1.298 .9029 | 1.507 . 9004
.3432 9475 L6508 | .okhe | 1.092 .938 | 1.116 .9331 | 1.684 -9287
.3718 .9738 . 6942 .9697 | 1.183 .9621 | 1.53% .9557 | 1.7681 .9501
kool .9899 .T4T6 .9856 | 1.27h 9776 | 1.652 .9708 | 1.918 . 9650
.4290 -9959 . 8010 .9920 | 1.365 .98L8 | 1.770 .9787 | 2.055 9734
5005 .9975 <9345 .9952 | 1.5925 .9908 | 2.065 9871 | 2.3975 9839
<5720 .9985 | 1.0680 L9971 | 1.820 .99kk | 2.360 .9922 | 2.7h0 .9902
<6435 9991 | 1.2015 .998 | 2.0475 .9966 | 2.655 .9953 | 3.0825 <99k
<715 .9995 | 1.3350 .998 | 2.275 .9980 | 2.950 .9971 | 3.425 996k
.858 .9998 | 1.6020 .9996 { 2.730 .99¢2 | 3.5L0 .9980 | k.11 .9987
1.001 .9999 | 1.8690 29999 | 3.185 .9997 | %.130 .9996 | 4.795 -9995
o 1.0000 ® 1.0000 © 1.0000 o 1.0000 o 1.0000

E = 1.0 VE = 1.k yt =1.8 Ve =3.0 (€t =

0 o] o 0 0 0 o} ) o o}
.1508 .1518 L1696 1617 .1804 L1682 .1946 1772 .2 .1813
.3016 .2829 .3392 .2986 .3608 .3088 .3892 .3232 ok .3297
4524 3966 .5088 AR .5h12 <4269 .5838 - 4437 .6 4512
. 6032 -4950 . 6784 .5137 |- -7216 .5259 .T78L .5430 .8 . 5507
.T540 .581k4 .848 5984 .902 . 6095 .973 .6251 | 1.0 . 6321
.90k8 L6562 | 1.0176 .6704 | 1.0824 .6798 | 1.1676 .6929 | 1.2 . 6988
1.0556 .7211 | 1.1872 .7319 | 1.2628 T390 | 1.3622 .T489 | 1.4 L1534
1.206k4 LTT70 | 1.3568 L7840 | 1.4432 .7887 | 1.5568 .7952 | 1.6 7981
1.3572 B2h6 | 1.5264 .8280 | 1.6236 .8302 | 1.752h .8333 | 1.8 LO34T
1.5080 .8654 | 1.606 .8651 | 1.80L .8650 | 1.946 .8648 | 2.0 8647
1.6588 .898L | 1.8656 .8953 | 1.9844 .8933 | 2.14%06 .8905 | 2.2 . 8802
1. 8096 +9253 | 2.0352 .9199 | 2.1648 916 | 2.3352 .9115 | 2.4 <9093
1.960k .9458 | 2.2048 .9391 | 2.3452 L9347 | 2.5292 .9285 | 2.6 <9257
2.1112 L9614 | 2.37hh .9533 | 2.5256 L9486 | 2.724k .9u21 | 2.8 .9392
2.262 .9603 | 2.54k0 9829 | 2.7060 .9587 | 2.9190 .9528 | 3.0 .9502
2.639 .9814 | 2.968 L9775 | 3-1570 <9750 | 3.4055 <9714 | 3.5 .9698
3.016 .9887 [ 3.392 9864 | 3.608 .9848 | 3.8020 .9827 | 4.0 987
3.393 .9932 | 3.816 <9917 | 4.059 .9908 | Lk.3785 .9895 | k.5 .988
3.770 .9959 | L.24o .9950 | 4.510 .994L | 4.865 .9931 | 5.0 .9933
.52k .9985 | 5.088 .9981 | 5.112 .9979 | 5.838 .9976 | 6.0 9975
5.278 -999k4 | 5.936 .9993 | 6.314 .9993 | 6.811 .9992 | 7.0 .9991
L 1.0000 o 1.0000 ® 1.0000 w 1.0000 o 1.0000

The peremeter X and Ay (See table T.)
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Figure 1.- Explanatory sketch for the boundary layer with suction for
arbitrary body shape.
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B: Figure 2.- The functions F; and Fg for the velocity distribution in
boundary layer, see equation (9).
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Figure 3.- The form parameter K of the velocity profile as a function of
A, 7\1, according to equation (14).
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Figure 4. The auxiliary functions G(K), 5 and
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as functions

of K, according to equations (17a), (19), and (20).
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Figure 6.- Diagram for solution of the differential equation for the momentum

thickness: G(r,xq).
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Figure 7.- The initial values of the boundary layer at the stagnation point for
various suction quantities.
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Figure 8,- Comparison of the velocity distributions according to the
approximate with the exact calculation.

(a) Plane plate in longitudinal flow, exact calculation according to Blasius,
approximate calculation according to equations (53) and (54).

(b) Exact calculation according to Hiemenz, approximate calculation
according to equations (58) and (58a).
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Figure 15,- The boundary layer on the circular cylinder with homogeneous
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suction for various suction quantities C, = '-Uﬂl v— . Form
: o)
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Figure 16.- The boundary layer on the circular cylinder with homogeneous suction for the mass
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